Ulcerative Colitis Agents
Therapeutic Class Review (TCR)

May 23, 2021

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management.

All requests for permission should be mailed to:

Magellan Rx Management
Attention: Legal Department
6950 Columbia Gateway Drive
Columbia, Maryland 21046

The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to PSTCREditor@magellanhealth.com.
FDA-APPROVED INDICATIONS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>Indication(s)</th>
<th>Treatment</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Prodrug Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>balsalazide (Colazal®)<sup>1</sup></td>
<td>generic, Salix</td>
<td>Mild to moderately active ulcerative colitis (UC) in patients ≥ 5 years</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>olsalazine (Dipentum®)<sup>2</sup></td>
<td>Meda/Mylan</td>
<td>--</td>
<td>Maintenance of remission of UC in patients intolerant of sulfasalazine</td>
<td></td>
</tr>
<tr>
<td>sulfasalazine (Azulfidine®, Azulfidine EN-tabs®)<sup>3,4</sup></td>
<td>generic*, Pfizer</td>
<td>Mild to moderately active UC Adjunctive therapy in severe UC in pediatric patients ≥ 24 kg and adults</td>
<td>Maintenance of remission of UC in adults</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td>Enteric-coated tablets are indicated in patients with UC who cannot take uncoated sulfasalazine tablets because of gastrointestinal (GI) intolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of rheumatoid arthritis that has not responded adequately to salicylates or other nonsteroidal anti-inflammatory agents (NSAIDs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of pediatric patients with polyarticular juvenile rheumatoid arthritis who have not responded adequately to salicylates or other NSAIDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Delayed-Release Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesalamine delayed-release tablets (Asacol® HD)<sup>5,6</sup></td>
<td>generic, Allergan</td>
<td>Moderately active UC</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mesalamine delayed-release capsules (Delzicol®)<sup>5</sup></td>
<td>generic, Allergan</td>
<td>Mild to moderately active UC in patients ≥ 5 years</td>
<td>Maintenance of remission of UC in adults</td>
<td></td>
</tr>
<tr>
<td>mesalamine MMX delayed-release tablets (Lialda®)<sup>7</sup></td>
<td>generic, Shire US</td>
<td>Mild to moderately active UC in pediatric patients ≥ 24 kg and adults</td>
<td>Maintenance of remission of mild to moderately active UC in adults</td>
<td></td>
</tr>
<tr>
<td>mesalamine extended-release capsules (Pentasa®)<sup>8</sup></td>
<td>Shire US</td>
<td>Mild to moderately active UC</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mesalamine extended-release capsules (Apriso®)<sup>9</sup></td>
<td>generic, Salix</td>
<td>--</td>
<td>Maintenance of remission of UC in adults</td>
<td></td>
</tr>
</tbody>
</table>
FDA-Approved Indications (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>Indication(s)</th>
<th>Treatment</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide rectal foam (Uceris®)</td>
<td>Salix</td>
<td>Mild to moderate active UC extending 40 cm from the anal verge</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mesalamine enemas (Rowasa®)</td>
<td>Meda/Mylan</td>
<td>Mild to moderately active distal UC, proctosigmoiditis, or proctitis</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mesalamine enemas sulfite-free (sfRowasa®)</td>
<td>generic, Meda/Mylan</td>
<td>Mild to moderately active distal UC, proctosigmoiditis, or proctitis</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mesalamine suppositories (Canasa®)</td>
<td>generic, Allergan</td>
<td>Active ulcerative proctitis</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Oral Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide extended-release tablets (Uceris®)</td>
<td>generic, Santarus</td>
<td>Mild to moderately active UC</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

* Authorized generic only for Azulfidine EN-tabs.
†Dibutyl phthalate in the enteric coating of Asacol HD delayed release tablets has been replaced by dibutyl sebacate.
‡Delzicol delayed-release capsules are bioequivalent to Asacol; however, Delzicol is not AB-rated to Asacol as they are different formulations.

OVERVIEW

Ulcerative colitis (UC) is a chronic inflammatory disease primarily affecting the colon and rectum. The disease is characterized by superficial infiltration of the bowel wall by inflammatory white cells, resulting in multiple mucosal ulcerations and crypt abscesses. The lesions are contiguous, typically extending retrograde from the rectum, involving the descending, transverse, or the entire colon. The principal goal of treatment for UC is inducing, then maintaining, remission of the disease.

UC affects approximately 1,000,000 people in the United States (US) and the incidence continues to increase worldwide. In North America, the prevalence of UC is estimated to be 249 per 100,000 individuals. UC may present at any age, but onset typically peaks between 15 and 30 years of age.

The predominant symptom of UC is diarrhea, which is usually associated with blood in the stool. Bowel movements are frequent but small in volume due to rectal inflammation. Another symptom includes pain in the lower quadrant or rectum. Systemic features, including fever, malaise, and weight loss are more common if a greater portion of the colon is affected. Elderly patients often complain of constipation rather than diarrhea because rectal spasms prevent passage of stool. The initial attack of UC may be fulminant with bloody diarrhea, but the disease more commonly begins indolently, with non-bloody diarrhea progressing to bloody diarrhea. UC can present initially with any extent of anatomic involvement ranging from disease confined to the rectum to the entire large intestine (pancolitis). Most commonly, UC follows a chronic intermittent course with long periods of quiescence interspersed with acute attacks lasting weeks to months. However, a significant percentage of patients suffer a chronic continuous course.
Aminosalicylates remain first-line treatment options for mild to moderate active UC with 90% of patients treated with this class shortly after disease diagnosis.13 Mesalamine agents currently are available in oral and rectal formulations. The rectal products achieve high luminal concentrations of the active component, 5-aminosalicylic acid (5-ASA, mesalamine), while minimizing adverse events from systemic absorption.20 Several aminosalicylates are available and differ only in mode of distribution throughout the small intestine and colon. Second-line therapy with a course of oral or rectal steroids, such as budesonide (Uceris), is indicated for induction therapy in patients with mild to moderate disease who do not respond to oral and rectal mesalamine agents or in patients with moderate to severe disease.21 Oral and rectal corticosteroids are not intended for maintenance therapy and can lead to serious adverse effects with long-term use.

For active ulcerative proctitis, an effective and rapid-acting approach is nightly administration of mesalamine retention enemas or suppositories, often supplemented with an oral aminosalicylate.22 Corticosteroid enemas can also be used. Another approach to proctitis is administration of an oral aminosalicylate alone, although therapeutic response may not be evident for 3 to 4 weeks.

In patients with severe or refractory UC symptoms, oral corticosteroids are indicated.23,24 Corticosteroids, while highly efficacious in short-term use, have numerous adverse effects, especially in the elderly, which preclude long-term use.25 Several injectable tumor necrosis factor (TNF)-inhibitors (infliximab [Remicade\textregistered, biosimilars], adalimumab [Humira\textregistered], and golimumab [Simponi Aria\textregistered]) are approved for inducing and maintaining clinical response/remission in patients with moderate to severe active UC who fail conventional therapy or who are considered at high-risk for colectomy.26,27 Vedolizumab (Entyvio\textregistered) is an intravenous (IV) integrin receptor antagonist indicated in adults for the treatment of moderately to severely active UC and moderately to severely active Crohn’s disease.28 The injectable interleukin-12/interleukin-23 antagonist, ustekinumab (Stelara\textregistered), received FDA approval for the treatment of adults with moderately to severely active UC in 2019.29 The oral Janus kinase (JAK) inhibitor tofacitinib (Xeljanz\textregistered, Xeljanz XR) is indicated for adults with moderately to severely active UC, specifically for patients with an inadequate response or intolerance to TNF inhibitors.30 These agents are reviewed in a separate therapeutic class review.

The 2013 American Academy of Family Physicians (AAFP) guidelines for the diagnosis and treatment of UC state that the incidence of colon cancer is increased with UC and achieving remission is critical in order to reduce a patient’s lifetime risk.31 The guidelines recommend 5-ASA (mesalamine) via suppository or enema as first-line for patients with proctitis or proctosigmoiditis, respectively; patients unable to tolerate rectally administered 5-ASA therapy may try oral preparations, although response times and remission rates may not be as favorable. Oral 5-ASA is effective in patients with active mild to moderate UC extending from the proximal to the sigmoid colon; a topical 5-ASA may be added if an oral formulation alone is inadequate. A short-term course of oral corticosteroids may be appropriate if oral plus topical 5-ASA therapy is not effective or if a more rapid response is desired. Prednisone is given in dosages of 40 mg to 60 mg per day, with the full-dose continued until symptoms are completely controlled (usually 10 to 14 days) followed by a gradual taper. Symptoms refractory to oral mesalamine or oral corticosteroids may be treated with IV infliximab (Remicade, biosimilars). A meta-analysis reported no statistically significant effect of azathioprine (Imuran\textregistered) for active UC and consistent data is lacking that reports adequate effect of azathioprine for preventing relapse. Azathioprine is generally not recommended for active UC; however, it may be considered in patients who require corticosteroids or cyclosporine to induce remission. The agent that is used to maintain
remission is usually the same as that used to achieve remission. To prevent relapse of the disease, the oral probiotics *Lactobacillus GG* and *Escherichia coli* Nissle 1917 have been shown to be as effective as 5-ASA. Long-term steroid use is not recommended for chronic maintenance due to significant side effects. Budesonide (Uceris) was first FDA approved in January 2013 and is not specifically addressed in these guidelines. Adalimumab, golimumab, vedolizumab, ustekinumab, and tofacitinib were not FDA-approved to treat UC at the time these guidelines were developed.

The 2019 American College of Gastroenterology (ACG) clinical guidelines state treatment selection for UC should be based on not only inflammatory activity but also disease prognosis. In general, mildly active proctitis and distal UC are treated with rectal 5-ASA (Grade: strong, Level of evidence: high or moderate); oral 5-ASA agents are used, if needed, as add-on for distal UC or to treat extensive disease. In patients with mildly active UC who are intolerant or non-responsive to 5-ASA, oral budesonide MMX is recommended to induce remission (strong, moderate). Moderately active UC should be treated with oral 5-ASA or budesonide MMX (strong, moderate). In patients with moderately to severely active UC, the ACG recommends induction of remission using systemic corticosteroids, anti-TNF therapy, vedolizumab, or tofacitinib (strong, moderate or high for all). With the exception of corticosteroids, the medication used to induce remission should be continued as maintenance therapy. The ACG states that complimentary therapies such as probiotics, curcumin, and fecal microbiota transplantation (FMT) require further study and clarification of treatment/endpoints.

The American Gastroenterological Association (AGA) 2019 practice guidelines for the treatment of mild to moderate UC recommend standard-dose mesalamine (2 to 3 g/day) or diazo-bonded 5-ASA (balsalazide and olsalazine) for induction and maintenance treatment in patients with extensive mild to moderate UC (Recommendation strength: strong, Quality of evidence: moderate). High-dose oral mesalamine combined with rectal 5-ASA may be required for patients with suboptimal response to standard-dose therapy, or in those with moderate or extensive disease (conditional, moderate [induction]). Oral prednisone or budesonide MMX may be added in those refractory to optimized oral and rectal 5-ASA (conditional, low). Proctosigmoiditis or proctitis can be treated with topical mesalamine rather than oral 5-ASA (conditional, very low); in patients with suboptimal response or intolerance to rectal mesalamine, rectal corticosteroids (enema or foam) may be used (conditional, low). Patients who do not respond adequately to the therapies as outlined above may need to escalate to systemic corticosteroids, immunomodulators, or biologic therapies. The guidelines make no recommendations regarding the use of probiotics, curcumin, and FMT; while they appear to be safe, their use could delay initiation of proven efficacious treatments and potentially lead to worsening symptoms or complications.

The 2020 AGA practice guidelines for moderate to severe UC consider patients with moderate to severe disease to be those who are dependent on or refractory to corticosteroids, exhibit ulcers upon endoscopic assessment, or are at high risk for colectomy. Long-term management of patients with moderate to severe disease can include medications from the following classes: TNF-alpha antagonists, immunomodulators (e.g., thiopurines [azathioprine], methotrexate), the anti-integrin agent vedolizumab, and JAK inhibitors (e.g., tofacitinib). If the agent selected for inducing remission is effective, it is usually continued as maintenance therapy; the exception to this would be when corticosteroids or cyclosporine are used for induction of remission. The guidelines provide recommendations for the management of adult outpatients, as well as hospitalized adults with acute, severe UC. The following agents are recommended over no treatment for adult outpatients with
moderate to severe UC, listed in order of FDA approval: infliximab, adalimumab, golimumab, vedolizumab, tofacitinib, or ustekinumab (Recommendation strength: strong, Quality of evidence: moderate). This is based on data demonstrating all active interventions were superior to placebo for induction of remission and for maintenance of remission with low rates for serious adverse events. In patients who are biologic-naive, infliximab or vedolizumab are suggested rather than adalimumab for induction of remission (conditional, moderate); however, patients with less severe disease who value the convenience of self-administration over the relative efficacy of therapy may select adalimumab instead. For induction of remission, thiopurine monotherapy is suggested against use (conditional, very low); however, it is suggested over no treatment for maintaining remission (conditional, low). Methotrexate monotherapy is suggested against use for induction, as well as maintenance of remission (conditional, low). The combination of an TNF-alpha antagonist, vedolizumab, or ustekinumab is suggested with thiopurines or methotrexate over biologic monotherapy or thiopurine monotherapy (conditional, low). Early use of biologics with or without immunomodulator therapy is suggested rather than gradual step up to these agents following failure of 5-ASA (conditional, very low). Additional recommendations for adult outpatients with moderate to severe UC are provided regarding the use of tofacitinib and management of non-responders to infliximab. For patients who achieve remission with biologic agents and/or immunomodulators or tofacitinib, it is suggested against continuing 5-ASA for induction and maintenance of remission (conditional, very low). The AGA has also published a Clinical Decision Support Tool (Clinical Care Pathway) to correspond with the pharmacological management of outpatient adults with moderate to severely active UC.35

PHARMACOLOGY36,37,38,39,40,41,42,43,44,45,46,47,48,49

The first oral aminosalicylate developed, sulfasalazine, consists of a sulfapyridine carrier moiety linked to 5-ASA via an azo bond.50 Colonic bacteria cleave the azo bond, converting sulfasalazine into sulfapyridine and 5-ASA moieties.51 While the sulfapyridine is absorbed and excreted in the urine, the 5-ASA component stays in the colon and is excreted in the feces. Although the specific mechanism is unknown, the intraluminal activity of 5-ASA produces a local therapeutic effect.52,53 Mucosal production of arachidonic acid metabolites, through cyclooxygenase and lipoxygenase pathways, is increased in patients with chronic inflammatory bowel disease. 5-ASA may decrease inflammation by blocking production of arachidonic acid metabolites in the colon.54

Subsequent oral agents were developed to enhance 5-ASA delivery to the colon and reduce the incidence of adverse events.55 The formulations fall into 3 categories: azo-bonded prodrug formulations (Colazal, Dipentum), delayed-release formulations achieved by pH shift (Apriso, Asacol HD, and Lialda) or controlled-release formulations (Pentasa). The azo-bonded prodrugs are similar to sulfasalazine, and colonic bacteria are required to cleave the azo bond and release the active 5-ASA moiety.56,57 Effectiveness of delayed and controlled-release formulations may be variable because release of mesalamine is pH-dependent. As a result, early release increases absorption of 5-ASA in the proximal small intestine, increasing systemic exposure to 5-ASA and possible nephrotoxicity.58 Apriso capsules have the Intellecor® extended release delivery technology that combines an enteric pH-dependent coating, giving a delayed release starting at a pH of 6, with a polymer matrix core that provides an extended release.59 Asacol HD tablets are coated with a pH-sensitive acrylic polymer that delays the release of 5-ASA. Lialda uses Multi Matrix System® (MMX) technology, a pH-dependent gastro-resistant coating, to delay the release of 5-ASA from the tablet core to the colon. Pentasa uses a water gradient to release microspheres containing 5-ASA from the capsule.
In December 2012, the FDA issued a final guidance recommending against the use of 2 specific phthalates, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), as excipients due to developmental and reproductive toxicants in laboratory animals, potential for being endocrine disrupting, and affecting reproductive and developmental outcomes in humans. These agents are often used as plasticizers in enteric and delayed release coatings of drug products, including a mesalamine delayed-release product (Asacol HD). Two formulations of mesalamine DR, Asacol HD and Delzicol, have been reformulated without DBP; DBP has been substituted with dibutyl sebacate (DBS).

Mesalamine is available as suppositories (Canasa) and enemas that deliver 5-ASA directly to the site of action. For the treatment of ulcerative proctitis, mesalamine suppositories (or corticosteroid foam), which deliver drug to the rectum, are appropriate for the treatment of up to 20 cm of distal colon. Mesalamine (or corticosteroid) retention enemas, which distribute drug to the left colon, can be used for active disease involving up to 60 centimeters of distal colon. A sulfite-free formulation of mesalamine enema (sFRowasa) has been FDA-approved.

Steroids, such as budesonide ER (Uceris), may suppress autoimmune and inflammatory responses in UC. Budesonide has a high topical glucocorticosteroid activity and substantial first-pass elimination. Uceris is a delayed and extended-release tablet using MMX technology and breaks down at pH ≥ 7. Budesonide is available as rectal foam (Uceris rectal foam) and can be used for active mild to moderate distal ulcerative colitis extending up to 40 centimeters from the anal verge.

PHARMACOKINETICS

All aminosalicylate oral products are designed to release 5-ASA for action in the intestine; therefore, systemic absorption is intended to be minimal. Absorbed 5-ASA and its metabolites are excreted in the urine. The majority of 5-ASA remains in the colonic lumen and is excreted in feces. The apparent half-life of 5-ASA can range from 2 to 15 hours due to the different formulations of the drugs.
Pharmacokinetics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Delivery Mechanism</th>
<th>Bioavailability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Prodrug Forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>balsalazide (Colazal)</td>
<td>Delivered to the colon intact then bacteria cleave the compound to release 5-ASA</td>
<td>low and variable</td>
</tr>
<tr>
<td>olsalazine (Dipentum)</td>
<td>Rapidly converted in the colon to molecules of 5-ASA by bacteria and the colon’s low prevailing redox potential</td>
<td>2.4</td>
</tr>
<tr>
<td>sulfasalazine (Azulfidine, Azulfidine EN-Tabs)</td>
<td>Metabolized by intestinal bacteria to 5-ASA and sulfapyridine; site of delivery is the colon Azulfidine EN-Tabs contain a cellulose acetate phthalate coating that retards disintegration in the stomach</td>
<td>< 15</td>
</tr>
<tr>
<td>Oral Delayed-Release Forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesalamine delayed-release tablets (Asacol HD)</td>
<td>Acrylic-based resin coating delays 5-ASA release until tablet reaches the terminal ileum and beyond; pH dependent release at pH ≥ 7</td>
<td>20–25</td>
</tr>
<tr>
<td>mesalamine delayed release capsules (Delzicol)*</td>
<td>Capsules contain acrylic based resin, Eudragit S (methacrylic acid copolymer type B, NF), which delays 5-ASA release until capsule reaches the terminal ileum and beyond; pH dependent release at ≥ pH 7</td>
<td>28</td>
</tr>
<tr>
<td>mesalamine MMX tablets (Lialda)</td>
<td>pH dependent polymer film breaks down at pH ≥ 6.8, in terminal ileum where mesalamine begins to be released from tablet core; tablet core has hydrophilic and lipophilic excipients that provide an extended release of mesalamine</td>
<td>21–22</td>
</tr>
<tr>
<td>mesalamine extended release capsules (Pentasa)</td>
<td>Ethylcellulose-coated, controlled release formulation releases 5-ASA throughout the intestinal tract</td>
<td>20–30</td>
</tr>
<tr>
<td>mesalamine extended release capsules (Apriso)</td>
<td>Intellicor extended-release delivery technology that combines an enteric pH-dependent coating which provides a delayed release starting at a pH of 6 with a polymer matrix core that enables extended release</td>
<td>21–44</td>
</tr>
<tr>
<td>Rectal Forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide rectal foam (Uceris)</td>
<td>Rectal administration</td>
<td>60</td>
</tr>
<tr>
<td>mesalamine enemas (Rowasa, sfRowasa)</td>
<td>Rectal administration</td>
<td>10–30</td>
</tr>
<tr>
<td>mesalamine suppositories (Canasa)</td>
<td>Rectal administration</td>
<td>variable</td>
</tr>
<tr>
<td>Oral Corticosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide extended release tablets (Uceris)</td>
<td>pH dependent enteric coated delayed release tablets with a polymer coating that dissolves at pH ≥7 with an extended release tablet core</td>
<td>10–20</td>
</tr>
</tbody>
</table>

* Delzicol 400 mg capsules are bioequivalent to Asacol 400 mg tablets. Two Delzicol 400 mg capsules have not been shown to be bioequivalent to 1 Asacol HD 800 mg tablets.
CONTRAINDICATIONS/WARNINGS

Aminosalicylates are contraindicated in patients with salicylate hypersensitivity. Mesalamine-containing products are also contraindicated in patients with a hypersensitivity to salicylates, aminosalicylates, or any of the other components. Hypersensitivity reactions to mesalamine (Apriso, Asacol HD, Delzicol, Lialda, Pentasa) may include myocarditis or pericarditis. Olsalazine (Dipentum) is contraindicated in patients with hypersensitivity to salicylates, aminosalicylates or their metabolites, or to any of the excipients. Sulfasalazine is also contraindicated in patients with sulfonamide hypersensitivity, porphyria, and intestinal or urinary obstruction. Budesonide ER (Uceris) is contraindicated in patients hypersensitive to budesonide or any excipients in of the product.

Deaths associated with administration of sulfasalazine have been reported. Deaths occurred from hypersensitivity reactions, agranulocytosis, aplastic anemia, other blood dyscrasias, renal and liver damage, irreversible neuromuscular and central nervous system changes, and fibrosing alveolitis. Complete blood counts, as well as urinalysis with careful microscopic examination, should be performed frequently in patients receiving sulfasalazine. Oligospermia and infertility have been observed in men treated with sulfasalazine; however, withdrawal of the drug appears to reverse the effects. Patients with a hypersensitivity reaction to sulfasalazine may have a similar reaction to other compounds that contain mesalamine (e.g., Pentasa, Rowasa, Lialda, Aproso) or are converted to mesalamine (e.g., Colazal, Dipentum). These hypersensitivity reactions can manifest as myocarditis, pericarditis, nephritis, hepatitis, pneumonitis, and hematologic abnormalities.

Renal impairment has been reported in patients taking products that contain or are converted to mesalamine. Evaluate renal function prior to initiation of therapy and periodically thereafter. Nephrolithiasis has occurred with the use of mesalamine (e.g., Apriso, Asacol HD, Canasa, Delzicol, Lialda, Pentasa, Rowasa, sfRowasa); as a result, adequate hydration is important. Additionally, balsalazide-containing products (e.g., Colazal) and olsalazine-containing products (e.g., Dipentum) carry the risk for nephrolithiasis due to the active moiety mesalamine; therefore, adequate fluid intake is important. Patients with pyloric stenosis may have prolonged gastric retention of oral mesalamine and balsalazide, which could delay the release of drug in the colon. Product labeling for the mesalamine formulation Lialda states it should be avoided in patients at risk of upper gastrointestinal tract obstruction. The risks and benefits of using mesalamine delayed-release products should be evaluated in patients with known renal impairment or taking nephrotoxic drugs. Hepatic failure has occurred in patients with pre-existing liver disease who have taken mesalamine. Since balsalazide and olsalazine are both converted to mesalamine, the risks and benefits of using these agents should also be assessed in patients with existing liver impairment. Lastly, mesalamine, balsalazide, and olsalazine have been associated with an acute intolerance syndrome that may be difficult to distinguish from a UC flare. These symptoms may abate once the agent is discontinued.

Sulfasalazine should be given with caution to patients with severe allergic conditions or bronchial asthma. Serious skin reactions, including exfoliative dermatitis, Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN), have been reported. Drug rash with eosinophilia and systemic symptoms (DRESS) have also been reported, and early manifestations such as fever or lymphadenopathy may be present even though rash is not. If such signs or symptoms are present, the patient should be evaluated immediately and sulfasalazine should be discontinued if there is no alternative etiology. Adequate fluid intake must be maintained in order to prevent crystalluria and stone formation.
SJS and DRESS have also been reported with the mesalamine-containing products Lialda and Pentasa.

Mesalamine enemas (Rowasa rectal suspension enema) contain potassium metabisulfite, a sulfite which may cause life-threatening allergic-type reactions including anaphylaxis. Sulfite sensitivity is more frequent in asthmatic patients or atopic non-asthmatic persons. Overall prevalence of sulfite sensitivity in the general population is not known, but probably low. A sulfite-free mesalamine enema (sfRowasa) is available; it is proposed to be safe for use in patients with sulfite allergy but still carries a contraindication regarding use in patients with known or suspected hypersensitivity to sulfites.

Chronic glucocorticosteroid use may cause hypercorticism, adrenal suppression, and can reduce the response of the hypothalamus-pituitary adrenal (HPA) axis to stress, such as surgery. Patients who are switched from glucocorticosteroids with greater systemic effects may undergo withdrawal, including acute adrenal suppression or benign intracranial hypertension. Consequently, adrenocortical function should be monitored and the dose of the high potency glucocorticosteroid should be reduced cautiously. Glucocorticoids can also suppress the immune system causing increased susceptibility to infection. Consequently, exposure to transmissible diseases should be avoided and corticosteroid use in patients with active or quiescent tuberculosis infection or untreated fungal, bacterial, or systemic viral or parasitic infections should be done cautiously, if at all. Liver dysfunction may decrease elimination and increase bioavailability resulting in increased toxicity. Caution should be observed in patients with hypertension, diabetes, osteoporosis, peptic ulcer, glaucoma or cataracts, or with a family history of diabetes or glaucoma, or with any other condition where glucocorticoids may have unwanted effects.

Mesalamine, a metabolite of sulfasalazine, may spuriously elevate test results for urinary normetanephrine when measured by liquid chromatography with electrochemical detection when testing for pheochromocytoma. Balsalazide-containing products (e.g., Colazal) and olsalazine-containing products (e.g., Dipentum) also carry this potential.

Mesalamine-containing medications (Apriso, Asacol HD, Canasa, Delzicol, Lialda, Pentasa, Rowasa, sfRowasa), the balsalazide-containing medication (Colazal), and the olsalazine-containing medication (Dipentum) have updated warnings of photosensitivity reactions for patients who have pre-existing skin conditions such as atopic dermatitis and atopic eczema.

Two of the mesalamine-containing medications, Asacol HD and Delzicol, have warnings regarding the associated iron contents of the products. Iron oxide is used as the colorant in the coating of the delayed-release Asacol HD tablets and delayed-release Delzicol capsules. Precaution should be taken in patients receiving iron supplementation or those at risk of developing iron overload.

DRUG INTERACTIONS

CYP3A4 inhibitors: Concomitant oral administration of budesonide ER (Uceris) and ketoconazole causes an 8-fold increase in the systemic exposure to oral budesonide ER. If treatment with inhibitors of CYP3A4 activity (e.g., ketoconazole, itraconazole, ritonavir, indinavir, saquinavir, erythromycin) is indicated, prior discontinuation of budesonide ER should be considered. Ingestion of grapefruit juice (which predominantly inhibits intestinal mucosal CYP3A4), increased systemic exposure for oral budesonide ER about 2-fold. Consequently, ingestion of grapefruit or grapefruit juice should be avoided with budesonide ER administration. Similarly, the inhibitors of CYP3A4 previously noted may increase systemic budesonide concentrations and should be avoided with budesonide rectal foam.
Digoxin: Sulfasalazine, in doses > 2 g daily, reduces the oral absorption of digoxin by 25%. It is unclear if other aminosalicylates have any significant effect on digoxin absorption.

Drugs that alter gastric pH: Mesalamine extended-release capsules (Apriso) depend on pH for dissolution of the coating of the granules; therefore, concomitant use with antacids should not occur. Dissolution of the coating of budesonide ER (Uceris) is pH dependent. Consequently, drug release and absorption may be altered when budesonide ER is used with drugs that raise gastric pH (e.g., proton pump inhibitors [PPIs], histamine 2-[H2]-blockers, and antacids).

Folic acid: Sulfasalazine can inhibit the absorption of folic acid; supplementation of folic acid may be required.

Phenytoin: Sulfasalazine can displace highly protein-bound drugs such as phenytoin.

Warfarin: Salicylates may displace warfarin from protein binding sites leading to hypoprothrombinemia. This dose-related interaction has been reported with olsalazine and sulfasalazine.

Nephrotoxic agents, including non-steroidal anti-inflammatory drugs (NSAIDs): Mesalamine use with known nephrotoxic agents may increase the risk of renal reactions and mesalamine-related adverse effects. This interaction also applies to balsalazide-containing products (e.g., Colazal) and olsalazine-containing products (e.g., Dipentum) as balsalazide and olsalazine are both converted to mesalamine.

Azathioprine, 6-mercaptopurine, and other myelosuppressive agents (e.g., thioguanine): Mesalamine use with these drugs may increase the risk for blood disorders, bone marrow failure, and related complications. This interaction also applies to balsalazide-containing products (e.g., Colazal) and olsalazine-containing products (e.g., Dipentum) as balsalazide and olsalazine are both converted to mesalamine.
ADVERSE EFFECTS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Abdominal pain</th>
<th>Diarrhea</th>
<th>Fever</th>
<th>Headache</th>
<th>Nausea</th>
<th>Rash</th>
<th>Vomiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Prodrug Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>balsalazide (Colazal)</td>
<td>6–13 (3)</td>
<td>5–9 (3)</td>
<td>2–6 (0)</td>
<td>8–15</td>
<td>4–5</td>
<td>nr</td>
<td>4–10</td>
</tr>
<tr>
<td>olsalazine (Dipentum)</td>
<td>10.1 (7.2)</td>
<td>5.9–17 (4.8–6.7)</td>
<td>< 1</td>
<td>5 (4.8)</td>
<td>5 (3.9)</td>
<td>2.3 (1.4)</td>
<td>1</td>
</tr>
<tr>
<td>sulfasalazine (Azulfidine)</td>
<td>reported</td>
<td>reported</td>
<td>less common</td>
<td>more common</td>
<td>more common</td>
<td>less common</td>
<td>more common</td>
</tr>
<tr>
<td>sulfasalazine (Azulfidine EN-tabs)</td>
<td>8</td>
<td>reported</td>
<td>reported</td>
<td>9</td>
<td>19</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Oral Delayed-Release Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesalamine delayed-release tablets (Asacol HD)</td>
<td>2.3</td>
<td>1.7</td>
<td>rare</td>
<td>4.7</td>
<td>2.8</td>
<td>reported</td>
<td>1.4</td>
</tr>
<tr>
<td>mesalamine MMX tablets (Lialda)</td>
<td>< 1</td>
<td>< 1</td>
<td>reported</td>
<td>3.4–5.6 (0.6)</td>
<td>nr</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>mesalamine extended release capsules (Pentasa)</td>
<td>1.1–1.7 (4)</td>
<td>3.5 (7.5)</td>
<td>0.9 (1.2)</td>
<td>2.2 (3.5)</td>
<td>1.8–3.1</td>
<td>1.3 (1.2)</td>
<td>1.1–1.5</td>
</tr>
<tr>
<td>mesalamine extended release capsules (Apriso)</td>
<td>5 (3)</td>
<td>8 (7)</td>
<td>reported</td>
<td>11 (8)</td>
<td>4 (3)</td>
<td>reported</td>
<td>nr</td>
</tr>
<tr>
<td>Rectal Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide rectal foam (Uceris)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>2 (1)</td>
<td>reported</td>
<td>nr</td>
</tr>
<tr>
<td>mesalamine enemas (Rowasa)</td>
<td>8.1 (7.8)</td>
<td>2.1 (3.1)</td>
<td>3.2 (0)</td>
<td>6.5 (12.5)</td>
<td>5.8 (9.4)</td>
<td>2.8 (3.1)</td>
<td>< 1</td>
</tr>
<tr>
<td>mesalamine enemas sulfite-free (sfRowasa)</td>
<td>8.1 (7.8)</td>
<td>2.1 (3.1)</td>
<td>3.2 (0)</td>
<td>6.5 (12.5)</td>
<td>5.8 (9.4)</td>
<td>2.8 (3.1)</td>
<td>< 1</td>
</tr>
<tr>
<td>mesalamine suppositories (Canasa)</td>
<td>5.2</td>
<td>3.1</td>
<td>1.2 (0)</td>
<td>14.4</td>
<td>3.1</td>
<td>1.2 (0)</td>
<td>< 1</td>
</tr>
<tr>
<td>Oral Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide ER tablets (Uceris)</td>
<td>3.9 (1.9)</td>
<td>nr</td>
<td>nr</td>
<td>11.4 (10.5)</td>
<td>5.1 (4.3)</td>
<td>nr</td>
<td>nr</td>
</tr>
</tbody>
</table>

Adverse effects are reported as a percentage. Incidences reported for placebo group are shown in parentheses. Adverse effects data are obtained from package inserts and are not meant to be comparative or all inclusive. nr = not reported.

Adverse event rates with Delzicol are not available as approval was based on bioequivalence to Asacol and the data from the Asacol safety and efficacy studies.

Clinical tolerance of 3 aminosalicylate preparations [mesalamine (Asacol), olsalazine (Dipentum), and balsalazide] was assessed in a consecutive series of 43 patients with inflammatory bowel disease intolerant to sulfasalazine. Clinical tolerance of mesalamine (63%), olsalazine (70%), and balsalazide (70%) was
similar. The most common adverse effects associated with the preparations were gastrointestinal in nature; diarrhea was a problem in 5 patients during treatment with olsalazine and 3 each while on mesalamine and balsalazide. Allergic reactions to aminosalicylates were uncommon; of 10 patients with rash following sulfasalazine, only 1 developed a rash with mesalamine. Results of this study indicate the vast majority of patients with inflammatory bowel disease can be managed with at least 1 of the 4 aminosalicylates, and adverse effects of sulfasalazine are multifactorial in etiology. Some adverse effects are due to the parent molecule, and some to 1 of its 2 metabolites, 5-ASA and sulfapyridine.

Renal impairment and injury including nephropathy, acute and chronic interstitial nephritis, and rarely, renal failure, have been reported in patients taking products that contain or are converted to mesalamine. In addition, exacerbation of UC symptoms has been reported upon initiation of therapy with Asacol HD as well as other mesalamine products. These symptoms usually abate once Asacol HD is discontinued. Patients with pyloric stenosis may have prolonged gastric retention of Asacol HD tablets, which could delay release of mesalamine in the colon. Lastly, cases of hepatic failure have occurred in patients with pre-existing liver disease who received mesalamine. Several other post-marketing adverse effects have been reported with various mesalamine formulations including nephrogenic diabetes insipidus, intracranial hypertension, lupus-like syndrome, hypersensitivity pneumonitis, interstitial lung disease, and hepatotoxicity.

Mesalamine (Lialda) has been evaluated in pediatric patients (n=105) aged 5 to 17 years and was found to have similar adverse reactions to those observed in adults. The most common adverse effects (≥ 5%) of pediatric patients included abdominal pain, upper respiratory tract infection, vomiting, anemia, headache, and viral infection.

The sulfite-free mesalamine enema (sfRowasa) is proposed to cause less bowel irritation than the original Rowasa enema formulation.

In a pooled analysis of the two phase 3 clinical trials, there were no clinically significant differences in glucocorticoid-related adverse events between budesonide ER (Uceris) 9 mg and placebo at 8 weeks.

In the use of budesonide rectal foam, no clinically significant differences were reported in the overall percentage of glucocorticoid related adverse effects between budesonide foam and placebo in the course of 2 placebo-controlled trials at 6 weeks of therapy. Common adverse reactions (incidence ≥ 2%) included decreased blood cortisol, adrenal insufficiency, and nausea.

SPECIAL POPULATIONS

Pregnancy

The labeling for balsalazide capsules (Colazal), budesonide extended-release tablet (Uceris), budesonide rectal foam (Uceris), mesalamine (Apriso, Delzicol, Lialda, Pentasa, Rowasa, sfRowasa), olsalazine (Dipentum), and sulfasalazine (Azulfidine) have been updated based on the Pregnancy and Lactation Labeling Rule (PLLRR). All state that there are no adequate and well-controlled studies in pregnant women; therefore, the drug should only be used during pregnancy if clearly needed. There have been case reports of neural tube defects (NTDs) in infants born to mothers exposed to sulfasalazine during pregnancy. The role of sulfasalazine in these NTDs has not been established; however, oral sulfasalazine inhibits the absorption and metabolism of folic acid, which may interfere with folic acid supplementation. The labeling for mesalamine (Apriso, Asacol HD, Canasa) and
budesonide rectal foam and extended-release tablet advises data are insufficient to inform of drug-associated risks in pregnant women.

Pediatrics

Sulfasalazine is approved for use in patients ≥ 6 years of age. Mesalamine (Delzicol) is indicated for treatment of mild to moderate active ulcerative colitis in children age ≥ 5 years, but is not indicated for maintenance therapy. Efficacy of mesalamine suppositories (Canasa) was not demonstrated in a 6-week open-label study in patients 5 to 17 years of age with ulcerative proctitis (n=49). Balsalazide 750 mg (Colazal) is approved for use in patients ≥ 5 years of age. Other products have not been sufficiently studied in pediatric populations.

Safety and effectiveness of oral budesonide ER (Uceris) as well as budesonide rectal foam (Uceris) have not been established in pediatric patients. Glucocorticosteroids, such as budesonide, may cause a reduction of growth velocity.

Product labeling for olsalazine (Dipentum) state that safety and effectiveness of in a pediatric population have not been established. However, in a 3-month double-blind, randomized trial that compared olsalazine to an equivalent dose of sulfasalazine in 56 children with mild to moderate UC, fewer patients on olsalazine improved and a greater number had progression of symptoms. Adverse effects were similar between the groups. For more detail of this study see the Clinical Trials section of this class review.

Safety and efficacy of the mesalamine formulation Lialda have been established in pediatric patients with body weight of ≥ 24 kg for the treatment of mild to moderate UC through a multicenter, randomized, double-blind, parallel-group trial with 105 pediatric patients ranging from 5 to 17 years old. Use is also supported by data from adult trials and pharmacokinetic analysis. For more details on the pediatric study, see the Clinical Trials section of this class review.

Geriatrics

Data from uncontrolled clinical studies and postmarketing experience suggested a higher incidence of blood dyscrasias (e.g., agranulocytosis, neutropenia, pancytopenia) in patients ≥ 65 years old who were taking mesalamine-containing products, including products converted to mesalamine (e.g., olsalazine). Caution should be taken to closely monitor blood cell counts (e.g., complete blood cell [CBC] counts, platelets) during therapy.

Clinical studies of budesonide ER (Uceris) and budesonide rectal foam (Uceris) did not include sufficient subjects aged ≥ 65 years to determine whether they respond differently in younger subjects. In general, budesonide ER should be used cautiously in elderly patients due to the potential for decreased hepatic, renal, or cardiac function, and concomitant disease.

Hepatic Impairment

Patients with moderate to severe liver disease should be monitored for increased signs and/or symptoms of hypercorticism with budesonide ER (Uceris).

Renal Impairment

Mesalamine is excreted largely by the kidney, and therefore the risk for adverse events from mesalamine containing products or products converted to mesalamine (e.g., olsalazine), may be higher.
in patients with renal dysfunction. Renal function should be assessed before starting therapy and regularly during treatment. Those with known renal impairment, history of renal disease, or using nephrotoxic drugs should be monitored for reduced renal function and mesalamine-related adverse reactions, if it is determined the benefits exceed the risks of therapy.

Gender

Adverse effects such as abdominal pain, fatigue, and nausea were reported more frequently in women than in men with balsalazide capsules (Colazal).

Phenylketonuria (PKU)

Caution should be taken when mesalamine ER (Apriso) is administered to patients with phenylketonuria because each capsule contains aspartame equivalent to 0.56 mg of phenylalanine.
DOSAGES

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Pediatrics</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>balsalazide (Colazal)</td>
<td>2.25 g (3 capsules) 3 times daily with or without food for 8 to 12 weeks; total daily dose: 6.75 g</td>
<td>Children 5 to 17 years: 2.25 g (three 750 mg capsules) 3 times daily for 8 weeks*</td>
<td>750 mg capsule</td>
</tr>
<tr>
<td>olsalazine (Dipentum)</td>
<td>0.5 g (2 capsules) twice daily</td>
<td>--</td>
<td>250 mg capsule</td>
</tr>
<tr>
<td>sulfasalazine (Azulfidine, Azulfidine EN-tabs)</td>
<td>Initial: 3 to 4 g (6 to 8 tablets) daily in evenly divided doses with dosage intervals not exceeding 8 hours Maintenance: 2 grams daily</td>
<td>Children ≥ 6 years: Initial: 40 to 60 mg/kg/day divided into 3 to 6 doses Maintenance: 30 mg/kg per day divided into 4 doses</td>
<td>500 mg tablet 500 mg enteric coated delayed-release tablet</td>
</tr>
<tr>
<td>mesalamine delayed-release tablets (Asacol HD)†</td>
<td>1.6 g (2 tablets) 3 times daily for 6 weeks‡; total daily dose: 4.8 g; take on an empty stomach ≥ 1 hour before and 2 hours after a meal</td>
<td>--</td>
<td>800 mg delayed-release tablet</td>
</tr>
<tr>
<td>mesalamine delayed-release capsules (Delzicol)‡</td>
<td>Initial: 0.8 g (2 capsules) 3 times daily with or without food for 6 weeks Maintenance: 1.6 g (4 capsules) daily in 2 to 4 divided doses for 6 months§</td>
<td>Children ≥ 5 years: Initial: weight-based up to a maximum of 2.4 g/day with or without food; twice daily dosing for 6 weeks Maintenance: not indicated</td>
<td>400 mg delayed-release capsule</td>
</tr>
<tr>
<td>mesalamine MMX tablets (Lialda)</td>
<td>Initial Therapy: 2.4 g or 4.8 g (2 to 4 tablets) once daily with food for up to 8 weeks‖ Maintenance: 2.4 g (2 tablets) once daily with food</td>
<td>Children ≥ 24 kg: Initial: weight-based up to a maximum of 4.8 g/day with food; once daily for 8 weeks Maintenance: weight-based up to a maximum of 2.4 g/day</td>
<td>1.2 g delayed-release tablet</td>
</tr>
</tbody>
</table>

* Balsalazide capsules (Colazal) may be opened and sprinkled on applesauce; contents may be chewed.
†Asacol HD and Delzicol have been formulated without dibutyl phthalate (DBP).
‡ Safety and efficacy of mesalamine delayed-release (Asacol HD) past 6 weeks of treatment of UC have not been established.
§ Mesalamine DR (Delzicol): swallow whole, do not chew, crush or break; for patients unable to swallow capsules whole, open the number of capsules required for the dose and swallow the contents whole.
‖ Safety and efficacy of mesalamine MMX delayed-release (Lialda) longer than 8 weeks of treatment for induction of remission of UC have not been established.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Pediatrics</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral Delayed-Release Forms (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesalamine extended-release capsules (Pentasa)</td>
<td>1 g (2 to 4 capsules) 4 times a day for up to 8 weeks¶</td>
<td>--</td>
<td>250 mg, 500 mg extended-release capsules</td>
</tr>
<tr>
<td>mesalamine extended-release capsules (Apriso)</td>
<td>1.5 g (4 capsules) once daily in the morning with or without food**</td>
<td>--</td>
<td>0.375 g extended-release capsules</td>
</tr>
<tr>
<td></td>
<td>Rectal Forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide rectal foam (Uceris)</td>
<td>1 metered dose (2 mg) rectally twice daily for 2 weeks followed by 1 metered dose once daily for 4 weeks</td>
<td>--</td>
<td>2 aerosol canisters each containing 14 metered doses delivering 2 mg per actuation with 28 PVC applicators</td>
</tr>
<tr>
<td>mesalamine enemas (Rowasa)</td>
<td>4 g (60 mL) rectally at bedtime (and retained for a minimum of 8 hours) for 3 to 6 weeks</td>
<td>--</td>
<td>4 g/60 mL enema (7 and 28 unit packages) Kits include the suspension and cleansing wipes</td>
</tr>
<tr>
<td>mesalamine enemas sulfite-free (sfRowasa)</td>
<td>4 g (60 mL) rectally at bedtime (and retained for a minimum of 8 hours) for 3 to 6 weeks</td>
<td>--</td>
<td>4 g/60 mL enema (7 and 28 unit packages)</td>
</tr>
<tr>
<td>mesalamine suppositories (Canasa)</td>
<td>1 g rectally at bedtime (and retained for a minimum of 1 to 3 hours) for 3 to 6 weeks</td>
<td>--</td>
<td>1,000 mg suppositories</td>
</tr>
<tr>
<td></td>
<td>Oral Corticosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budesonide ER tablets (Uceris) ††</td>
<td>9 mg once daily in the morning with or without food for up to 8 weeks</td>
<td>--</td>
<td>9 mg enteric coated delayed- and extended-release tablets</td>
</tr>
</tbody>
</table>

¶ Mesalamine capsules (Pentasa): capsules may be swallowed whole or capsule may be opened and the contents sprinkled onto applesauce or yogurt. The entire contents should be consumed immediately. Capsules and contents must not be crushed or chewed.

** The duration of mesalamine Intellicor extended-release (Apriso) use for maintaining remission of UC beyond 6 months has not been evaluated.

†† Budesonide ER (Uceris): swallow whole, do not chew, crush, or break.
CLINICAL TRIALS

Search Strategy

Articles were identified through searches performed on PubMed and review of information sent by manufacturers. Search strategy included the FDA-approved use of all drugs in this class. Randomized, controlled, comparative trials are considered the most relevant in this category. Studies included for analysis in the review were published in English, performed with human participants, and randomly allocated participants to comparison groups. In addition, studies must contain clearly stated, predetermined outcome measure(s) of known or probable clinical importance, use data analysis techniques consistent with the study question and include follow-up (endpoint assessment) of at least 80% of participants entering the investigation. Despite some inherent bias found in all studies including those sponsored and/or funded by pharmaceutical manufacturers, the studies in this therapeutic class review were determined to have results or conclusions that do not suggest systematic error in their experimental study design. While the potential influence of manufacturer sponsorship/funding must be considered, the studies in this review have also been evaluated for validity and importance.

The safety and efficacy of Delzicol is based on the Asacol clinical trials.151 Asacol has since been removed from the market, but studies including Asacol are included below because Asacol served as an active comparator for subsequent products.

balsalazide (Colazal) versus mesalamine delayed-release (Asacol)

A double-blind study compared the effectiveness of balsalazide and mesalamine delayed-release in the treatment of 101 patients with active moderate to severe UC.152 Patients were randomized to receive balsalazide 6.75 g/day or mesalamine delayed-release 2.4 g/day for 12 weeks. After 2, 4, and 12 weeks, symptom control was greater in the balsalazide group. Remission rate after 12 weeks of therapy was 62% with balsalazide and 37% with mesalamine delayed-release. Median time to first day of complete relief of symptoms was 10 days for the balsalazide group and 25 days for the mesalamine delayed-release group. Adverse effects occurred in 48% of patients treated with balsalazide and 71% of those treated with mesalamine delayed-release.

A randomized, double-blind, double-dummy, parallel-group, dose-response study was performed comparing balsalazide 2.25 g or 6.75 g daily and delayed-release mesalamine 2.4 g daily.153 Medication was administered for 8 weeks to 154 patients with active, mild to moderate UC, the majority of who were relapsing. High-dose balsalazide was superior to low-dose in rectal bleeding, stool frequency, sigmoidoscopic score, and PGA. The only significant difference observed between high-dose balsalazide and mesalamine delayed-release was more rapid onset of action as determined by a better 2-week sigmoidoscopic score for patients treated with balsalazide (55% versus 29%; p=0.006). Balsalazide 6.75 g daily was well tolerated, and the safety profile did not differ significantly from either balsalazide 2.25 g daily or mesalamine delayed-release 2.4 g daily.

A total of 173 patients with active, mild to moderate UC were randomized to 8 weeks of double-blind treatment with balsalazide 2.25 g or mesalamine 0.8 g, each given 3 times daily.154 Overall, 46% of balsalazide-treated and 44% of mesalamine-treated patients achieved symptomatic remission at endpoint. Although the median time to symptomatic remission was shorter with balsalazide (25 days) than with mesalamine (37 days), the difference was not clinically significant. Significantly more
balsalazide-treated patients showed improvement in sigmoidoscopic score (p=0.002), stool frequency (p=0.006), rectal bleeding (p=0.006), and physician global assessment scores (p=0.013) by 14 days compared to mesalamine-treated patients. The difference between groups in improved sigmoidoscopic score was significant at day 28 (p=0.002). By day 56 and at endpoint, no significant differences between groups were detected. During the treatment period, 54% of balsalazide- and 64% of mesalamine-treated patients reported at least 1 treatment-emergent adverse event. The most common adverse events affected the gastrointestinal tract or the central and peripheral nervous systems.

The mesalamine delayed-release (Asacol) product used in the studies was manufactured and marketed by Smith Kline & French in the United Kingdom, rather than the Procter & Gamble product used in North America. Although the significance is not known, data are available from comparative in vitro dissolution studies to suggest slight differences exist between the 2 Asacol products.155

budesonide extended-release tablets (Uceris) versus placebo and budesonide

This was a randomized, double-blind, placebo-controlled study in 461 adults with active, mild to moderate UC, defined as an Ulcerative Colitis Disease Activity Index (UCDAI) of ≥ 4 and ≤ 10 and histology consistent with active UC.156 Budesonide ER 9 mg and budesonide ER 6 mg (not approved in the US) were compared with, another brand of budesonide 9 mg (as reference) not approved for the treatment of UC, and compared to placebo. The primary endpoint was induction of remission after 8 weeks and remission was defined as a UCDAI score of ≤ 1, with sub scores of 0 for rectal bleeding, stool frequency, and mucosal appearance and with a ≥ 1 point reduction in an endoscopy-only score. At the end of 8 weeks 17.4% in the budesonide ER 9 mg group, 8.3% in the budesonide ER 6 mg group, 12.6% in the budesonide 9 mg group, and 4.5% of placebo, were in remission. The difference in remission rate for budesonide ER 9 mg versus placebo was 12.9% (95% confidence interval [CI], 4.6 to 21.3, p<0.025).

budesonide extended-release tablets (Uceris) versus placebo and mesalamine

This was a randomized, double-blind, placebo-controlled study in 509 adult patients with active, mild to moderate UC.157,158 Budesonide ER 9 mg and budesonide ER 6 mg (not approved in the US) was compared with mesalamine DR 2.4 g (as reference), and to placebo. The primary endpoint was induction of remission after 8 weeks. Remission was defined as a UCDAI score of ≤ 1, with sub scores of 0 for rectal bleeding, stool frequency, and mucosal appearance and with a ≥ 1 point reduction in an endoscopy-only score. At the end of 8 weeks 17.9% of patients administered budesonide ER 9 mg, 13.2% in the budesonide ER 6 mg arm, 12.1% in the mesalamine DR 2.4 g arm, and 7.4% of placebo patients, were in remission. The difference in remission rate for budesonide ER 9 mg compared to placebo was 10.4% (95% CI, 2.2 to 18.7, p<0.025). Adverse events occurred at similar rates among groups.

budesonide (Uceris) plus oral mesalamine versus placebo plus oral mesalamine

A randomized, double-blind, placebo-controlled, multicenter trial assessed the efficacy and safety of budesonide multimatrix for induction of remission in 510 adults with mild to moderate ulcerative colitis (UC) refractory to mesalamine therapy.159 Patients were randomized to either once daily oral budesonide 9 mg or placebo for 8 weeks. Patients also continued baseline treatment with oral mesalamine ≥ 2.4 g/day. An intention-to-treat (ITT) analysis was used and found that clinical and endoscopic remission was achieved by the end of 8 weeks in 13% of patients receiving budesonide
compared to 7.5% of patients receiving placebo (p=0.049). In patients receiving budesonide versus placebo, more patients achieved endoscopic remission (20% versus 12.3%, respectively; p=0.02) and histological healing (27% versus 17.5%, respectively; p=0.02). However, clinical remission as measured by UC disease activity index rectal bleeding and stool frequency subscale scores of 0 was similar in both groups (p=0.7). Adverse effect rates were similar between the budesonide group and placebo (31.8% versus 27.1%; p=0.02).

budesonide rectal foam (Uceris) versus placebo

Two randomized, double-blind, placebo-controlled, multicenter trials evaluated 546 adults with active mild to moderate distal UC. For these trials oral and rectal corticosteroids, as well as rectal 5-ASA products were prohibited during the course of the trials, but allowed as rescue therapy. Oral 5-ASA products were allowed at doses ≤ 4.8 g/day. Patients were randomized to 267 subjects to budesonide rectal foam and the remaining 279 subjects to placebo. During each trial patients received budesonide rectal foam 2 mg or placebo twice daily for 2 weeks followed by 2 mg doses once daily for an additional 4 weeks. In each of the 2 trials, the primary endpoint was the proportion of patients who were in remission after 6 weeks of treatment with remission defined as a decrease or no change in the stool frequency subscore from baseline, a rectal bleeding subscore of 0, and an endoscopy score of 0 or 1. In each trial, a higher proportion of patients in the budesonide rectal foam group than in the placebo group were in remission at Week 6, (38.3% and 44% versus 25.8% and 22.4%, 95% CI) and had a rectal bleeding subscore of 0, (46.6% and 50% versus 28% and 28.6%, 95% CI) at Week 6.

mesalamine delayed-release granules (Apriso) versus placebo

Mesalamine delayed-release granules were evaluated in a double-blind, placebo-controlled trial of patients with UC in remission who took mesalamine delayed-release granules 1.5 g (n=209) or placebo (n=96) once-daily for up to 6 months. The percentage of relapse-free patients at month end of treatment was higher with mesalamine than placebo (78.9% versus 58.3%; p<0.001) in the intent-to-treat (ITT) population. Significant differences (p≤0.025) favoring mesalamine were observed for most secondary endpoints including improvement in rectal bleeding, physician’s disease activity rating, stool frequency, patients classified as a treatment success, and relapse-free duration. For the mesalamine delay-release granules-treated group, 31.1% of patients withdrew from the study; UC relapse was the cause for 19.6% (n=41) of patients. For the placebo-treated group, 49% patients (n=47) withdrew from the study; 39.6% of patients (n=38) withdrew due to UC relapse. The incidence of adverse events was similar between groups. This study was sponsored by the manufacturer of Apriso, Salix Pharmaceuticals.

mesalamine delayed release (Asacol HD) 4.8 g/day versus mesalamine delayed release (Asacol) 2.4 g/day

A 6-week, multicenter, randomized, double-blind, active-control study (ASCEND III) was conducted to assess the non-inferiority of mesalamine delayed release high dose (Asacol HD) 4.8 g/day to mesalamine delayed release (Asacol) 2.4 g/day in 772 patients with moderately active UC. The primary endpoint was overall improvement at Week 6 as defined by the Physician’s Global Assessment (PGA) (based on clinical assessments of rectal bleeding, stool frequency, and sigmoidoscopy) with no worsening in any individual clinical assessment. The primary objective of non-inferiority was met when 70% (273 of 389) of patients who received mesalamine 4.8 g/day achieved treatment success at week
6 compared to 66% (251 of 383) of patients receiving mesalamine 2.4 g/day. In addition, 43% of patients receiving the higher dose of mesalamine achieved clinical remission at Week 6 compared to 35% of patients receiving the lower dose of mesalamine (p=0.4). A therapeutic advantage was observed for those patients who were previously treated with corticosteroids, oral mesalamine, rectal therapies, or multiple UC medications. Both regimens were well tolerated with similar adverse events.

mesalamine MMX delayed-release tablets (Lialda) versus placebo

A randomized, double-blind, parallel-group, placebo-controlled trial was conducted in 280 patients with active, mild to moderate UC over 8 weeks. Patients received mesalamine MMX delayed-release 1.2 g twice daily, 4.8 g once daily, or placebo. The primary efficacy endpoint was percentage of patients in clinical and endoscopic remission after 8 weeks of treatment. Clinical and endoscopic remission at week 8 was achieved by 34.1% and 29.2% of the mesalamine MMX delayed-release 2.4 g/day and 4.8 g/day groups, respectively, versus 12.9% of placebo patients. Mesalamine MMX delayed-release tablets given once or twice daily were well tolerated and compared with placebo, demonstrated efficacy for induction of clinical and endoscopic remission in mild to moderately active UC.

mesalamine MMX delayed-release tablets (Lialda) versus mesalamine delayed-release tablets (Asacol)

An 8-week, double-blind, multicenter trial was conducted in 340 patients with active, mild to moderate UC comparing mesalamine MMX delayed-release 2.4 g/day or 4.8 g/day, mesalamine delayed-release 2.4 g/day given in 3 divided doses, or placebo. The primary endpoint was proportion of patients in clinical and endoscopic remission. Remission was measured by a modified UC disease activity index of ≤ 1 with rectal bleeding, stool frequency scores of 0, no mucosal friability, and a ≥ 1 point reduction in sigmoidoscopy score from baseline. Patients treated with mesalamine MMX delayed-release experienced significantly greater clinical and endoscopic remission rates by Week 8 versus placebo (2.4 g/day = 40.5%; 4.8 g/day = 41.2%; placebo = 22.1%). The remission rate for mesalamine delayed-release was not significantly greater than placebo (32.6%; p=0.124). All active treatments were well-tolerated.

A 6 month, randomized, double-blind, active-control, multicenter trial was conducted to assess the non-inferiority of once-daily mesalamine MMX (Lialda) 2.4 g/day compared with twice-daily mesalamine delayed-release (Asacol) 1.6 g/day in 826 patients with UC in maintaining endoscopic remission after 6 months. At 6 months, 83.7% and 77.8% of patients receiving mesalamine MMX in the per-protocol and ITT populations, respectively, maintained endoscopic remission compared with 81.5% and 76.9% of patients receiving mesalamine delayed-release (95% CI for difference -3.9%, 8.1% [for the per protocol population, PP]). Time to relapse was not significantly different between the 2 treatment groups (log-rank test, p=0.5116 [PP population]).

mesalamine MMX delayed-release tablets (Lialda) low-dose versus mesalamine MMX delayed-release tablets (Lialda) high-dose in pediatrics

A two-phase, multicenter, randomized, double-blind, parallel group study (n=105; NCT02093663) was conducted to determine the safety and effectiveness of mesalamine MMX (Lialda) in pediatric patients ages 5 to 17 years with mildly to moderately active UC. The two phases included an 8-week treatment phase (n=53) and a 26-week maintenance phase (n=87), with an overall population of 105 patients. A total of 27 patients participated in both phases. In each phase, patients were randomized in
a 1:1 ratio to receive a low or high weight-based dosage. As there was a very small proportion of patients in the lowest body weight group, safety and efficacy could not be established in patients weighing < 24 kg. At week 8, approximately 65% of patients in the recommended dosage arm (n=26) achieved the primary outcome, defined as a partial UC Disease Activity Index (UC-DAI) ≤ 1 and were eligible to continue in the 26-week treatment phase along with other eligible patients with a UC-DAI score of ≤ 2 with an endoscopic subscore of 0 or 1. The primary outcome was the same as for the 8-week phase and was reached by 55% of the 42 patients in the recommended dosage arm. The higher than recommended Lialda dosage was not found to be more effective than the recommended dose amongst the patients in the 26-week phase. Therefore, this is not a recommended dosage.

olsalazine (Dipentum) versus sulfasalazine (Azulfidine)

A randomized, double-blind, 6-month study compared 3 doses of olsalazine (0.5 g, 1.25 g, and 2 g daily) and sulfasalazine 2 g daily for maintenance of remission in 162 patients with UC.169 Using intention-to-treat analysis, failure rates of the different treatment groups were not significantly different (36%, 49%, and 24% for 0.5 g, 1.25g, and 2 g olsalazine daily and 32% for 2 g sulfasalazine daily). Olsalazine and sulfasalazine showed a tendency towards lower failure rates in extended disease (28%) than in distal disease (44%). Withdrawal rate due to adverse effects was 4% with the most frequent single event being diarrhea, which occurred only in patients treated with olsalazine (2.5%, 5.2%, and 11.7% for daily olsalazine doses of 0.5 g, 1.25, and 2 g, respectively).

A randomized, double-blind trial compared the relapse-preventing effects of olsalazine and sulfasalazine in patients with UC over 12 months.170 A total of 227 patients received either olsalazine 500 mg twice daily or sulfasalazine 1 g twice daily. A total of 197 patients completed the trial. Relapse rate after 12 months in the olsalazine group was 46.9% versus 42.4% in the sulfasalazine group (95% CI, -9 to 18). Equal numbers of patients in each group withdrew from the trial because of adverse effects.

olsalazine (Dipentum) versus sulfasalazine (Azulfidine) in pediatrics

Safety and efficacy of olsalazine (Dipentum) were compared to sulfasalazine over 3 months in a multicenter, randomized, double-blind study of 56 children with mild to moderate UC.171 Twenty-eight children received 30 mg/kg/day of olsalazine (maximum of 2 g/day) and 28 received 60 mg/kg/day of sulfasalazine (maximum of 4 g/day). After 3 months, 39% of olsalazine-treated patients were asymptomatic or clinically improved, compared to 79% of sulfasalazine-treated patients (p=0.006). In addition, 10 of 28 patients on olsalazine versus 1 on sulfasalazine required prednisone because of lack of response or worsening of colitis (p=0.005). The dose of olsalazine used in the trial was equivalent to a standard dose of sulfasalazine, but fewer patients on olsalazine improved and a greater number had progression of symptoms when compared to sulfasalazine. Adverse effects were frequent in both groups; a clinically significant difference was not detected.

META-ANALYSIS

A 2020 meta-analysis provided an update of a prior Cochrane review evaluating oral 5-aminosalicylic acid (5-ASA) for induction of remission in UC.172 A total of 54 studies evaluating 9,612 individuals were selected for inclusion; studies were randomized controlled trials (RCTs) assessing adults with active UC. Oral 5-ASA could have been compared to placebo, sulfasalazine, or other 5-ASA formulations. Overall, the majority of studies were determined to have a low risk of bias. Across 11 studies assessing 2,387 participants, 71% of individuals who received 5-ASA did not enter clinical remission compared to 83%
of those who received placebo (relative risk [RR], 0.86; 95% CI, 0.82 to 0.89; high-certainty evidence). A
dose-response trend was seen with 5-ASA. In terms of 5-ASA compared to sulfasalazine, no difference
was found in clinical remission rates with 54% of 5-ASA patients failing to enter remission versus 58%
of sulfasalazine patients (RR, 0.9; 95% CI, 0.77 to 1.04) based on 8 studies (moderate-certainty
evidence). Additionally, no difference in remission rates was found when once-daily dosing was
compared to conventional dosing for 5-ASA. Furthermore, no difference in efficacy was observed
among various 5-ASA formulations (moderate-certainty evidence), and no difference in the proportion
of adverse events (AEs) and serious adverse events (SAEs) was found between 5-ASA and placebo,
once-daily and conventionally-dosed 5-ASA, and 5-ASA and comparator 5-ASA formulations. Common
AEs observed across the studies were flatulence, abdominal pain, nausea, diarrhea, headache, and
worsening UC. In terms of the tolerability of sulfasalazine compared to 5-ASA, across 12 studies, 29% of
sulfasalazine-treated patients had an AE compared to 15% of 5-ASA participants (RR 0.48; 95% CI, 0.36
to 0.63; moderate-certainty evidence). Authors concluded 5-ASA is superior to placebo (high-certainty
evidence) and not more effective than sulfasalazine (moderate-certainty evidence). Furthermore, data
suggests 5-ASA dosed once daily is likely as effective as conventionally-dosed 5-ASA (high-certainty
evidence). Lastly, there are few, if any, differences in efficacy or safety between the various 5-ASA
formulations for inducing remission.

A 2020 meta-analysis provided an update of a prior Cochrane review evaluating oral 5-ASA for
maintenance of remission in UC. A total of 44 studies evaluating 9,967 patients was identified. Studies
included were RCTs with a minimum treatment duration of 6 months that evaluated oral 5-ASA
therapy to placebo, sulfasalazine, or other 5-ASA formulations in patients with quiescent UC. Across 8
studies (n=1,555), 5-ASA was found to be more effective than placebo for maintenance of remission
(clinical or endoscopic) as approximately 37% of 5-ASA patients experienced a relapse compared to
55% of patients who received placebo at 6 to 12 months (RR 0.68; 95% CI, 0.61 to 0.76; high-certainty
evidence). Based on 12 studies (n=1655), it was determined that sulfasalazine was more effective than
5-ASA for maintenance of remission with approximately 48% of 5-ASA-treated patients experiencing a
relapse at 6 to 18 months compared with 43% of sulfasalazine-treated patients (RR 1.14; 95% CI, 1.03
to 1.27; high-certainty evidence). Although adherence to study medication and SAEs were not detailed
for this comparison, it was concluded there was likely little to no difference in AEs at 6 to 12 months
(RR 1.07, 95% CI 0.82 to 1.40; moderate-certainty evidence). It was also found that no or minimal
differences in the efficacy of different 5-ASA formulations based on 44% of individuals in the 5-ASA
group relapsing at 6 to 18 months compared with 41% of those in 5-ASA comparator group (RR 1.08;
95% CI, 0.91 to 1.28; low-certainty evidence). Common AEs (flatulence, abdominal pain, nausea,
diarrhea, headache, and dyspepsia) are likely similar between 5-ASA and placebo as well as 5-ASA and
sulfasalazine. Authors concluded that 5-ASA is superior to placebo for maintenance therapy in UC
(high-certainty evidence), and that 5-ASA is inferior to sulfasalazine (high-certainty evidence). Lastly,
findings suggest oral 5-ASA once daily has comparable efficacy and safety as conventional dosing for
maintenance of remission. An earlier meta-analysis resulted in similar conclusions.

SUMMARY

Aminosalicylates remain first-line treatment options for mild to moderate active ulcerative colitis (UC);
90% of patients are treated with this class shortly after disease diagnosis. Mesalamine agents currently
are available in oral and rectal formulations. The relative tolerability and compliance must be
considered in evaluation of the oral mesalamine preparations. Due to the addition of the 500 mg
capsule of mesalamine controlled-release (Pentasa), daily pill burden has decreased from 16 to 8. Mesalamine controlled-release (Pentasa) is dosed 4 times a day using 8 capsules and mesalamine delayed-release (Delzicol) is dosed 3 times a day using 6 capsules. Another formulation of mesalamine delayed-release (Asacol HD) is available at a higher strength that also allows for 3 times daily dosing using 6 tablets. One Asacol HD 800 mg tablet has not been shown to be bioequivalent to two Delzicol 400 mg capsules; therefore, substitution should not occur. Mesalamine MMX delayed-release (Lialda) is dosed once daily using 2 to 4 tablets. Mesalamine Intellicor extended-release (Apriso) is dosed once daily using 4 capsules. Use of mesalamine Intellicor extended-release (Apriso) and mesalamine MMX delayed-release tablets (Lialda) beyond 6 months has not been evaluated for maintaining remission of UC.

Balsalazide (Colazal) is indicated for UC treatment, while olsalazine (Dipentum) is indicated for UC maintenance. Balsalazide (Colazal) differs from olsalazine (Dipentum) in that balsalazide (Colazal) appears to have a more rapid onset of effect; it may also be slightly more effective for left-sided disease. The tolerance of olsalazine (Dipentum) is often limited by a high rate of secretory diarrhea.

The adverse effect profile for sulfasalazine is less favorable than newer agents especially at higher doses. Patients with disease affecting the distal portion of the colon should use a rectal preparation either alone or in combination with oral therapy. Enemas and suppositories may provide quicker response time as well as less frequent dosing compared to oral therapy. Rectally administered mesalamine (generic, Rowasa enemas, sfRowasa enemas, Canasa suppositories) has a specific role as a non-oral treatment for distal UC, proctosigmoiditis, and proctitis. The sulfite-free mesalamine enema (sfRowasa) was FDA-approved as a formulation revision with a new trade name. It is proposed to cause less bowel irritation and to be safe for use by patients with sulfite allergy; however, this has yet to be demonstrated clinically.

Extended-release budesonide (Uceris) oral and rectal foam offer alternatives for induction of remission in mild to moderate UC, but they, along with systemic corticosteroids, should not be used in maintenance of remission.

REFERENCES

2 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.
14 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.

37 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.

46 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.

47 sfRowasa [package insert]. Somerset, NJ; Meda; October 2020.

49 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.

51 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.

70 Lialda [package insert]. Lexington, MA; Takeda; December 2020.
74 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.
75 sfRowasa [package insert]. Somerset, NJ; Meda; October 2020.
77 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
79 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.
84 Lialda [package insert]. Lexington, MA; Takeda; December 2020.
88 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.
89 sfRowasa [package insert]. Somerset, NJ; Meda; October 2020.
91 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
93 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.
100 Apriso [package insert]. Bridgewater, NJ; Salix; October 2020.
102 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.
103 sfRowasa [package insert]. Somerset, NJ; Meda; October 2020.
105 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
107 Dipentum [package insert]. Somerset, NJ; Meda; October 2020.
119 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
133 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.
136 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
139 Azulfidine [package insert]. New York, NY; Pfizer; May 2021.
143 Lialda [package insert]. Lexington, MA; Takeda; December 2020.
147 Rowasa [package insert]. Somerset, NJ; Meda; October 2020.
150 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
156 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
158 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.
160 Uceris tablet [package insert]. Raleigh, NC; Salix; April 2020.